Skip to the content.

The Mathematical Foundation: Distance and Proximity

2.1. The Role of Distance and Similarity Measures

At the core of many unsupervised machine learning algorithms, particularly those used for clustering, are mathematical concepts known as distance and similarity measures. These measures are not mere technical details; they are fundamental components that quantify the similarity or dissimilarity between two data points in a multi-dimensional space. By defining how “close” or “far apart” different data points are, these metrics directly influence how an algorithm groups them into clusters.

The selection of a distance measure is a critical modeling decision that encodes a researcher’s assumptions about the data’s inherent structure. The chosen metric defines the geometry of the problem and will, as a result, strongly influence the shape of the clusters that are discovered. For a clustering solution to be meaningful, the distance metric must align with the type and properties of the data being analyzed. A mismatch between the metric and the data’s true geometry can lead to suboptimal or nonsensical clusters, making this one of the most important choices in a clustering pipeline.

2.2. Key Distance and Similarity Metrics

A variety of distance and similarity metrics are available, each suited for different types of data and specific use cases. The following table and explanations detail some of the most common ones.

Table 2: Key Distance and Similarity Metrics

Metric Formula Data Type Suitability Ideal Use Case
Euclidean Distance $d(x,y) = $) Continuous variables The default for many algorithms; measures straight-line distance in a continuous space.
Manhattan Distance $d(x,y) = _{i=1}^n x_i - y_i $)
Minkowski Distance $d_m = (_{i=1}^n x_i - y_i m){1/m} $)
Jaccard Similarity $ $) Binary or binarized data Determining the similarity and diversity of two sample sets.
Cosine Similarity $ = $) High-dimensional or text data Used when vector direction is more important than magnitude (e.g., text analysis, recommendation engines).